Algorithms for Biological Networksa biennial BioSB course 
Lecturers:  dr. Maria SuarezDiez, Wageningen University prof. dr. ir. Dick de Ridder, Wageningen University dr. ir. Jeroen de Ridder, University Medical Center Utrecht dr. AaltJan van Dijk, Wageningen University dr. K. Anton Feenstra, Vrije Universiteit, Amsterdam prof. dr. Jaap Heringa, Vrije Universiteit, Amsterdam 
Contact:  dr. Maria SuarezDiez email: maria.suarezdiez@wur.nl telephone: +31 317 482018 
prof. dr. ir. Dick de Ridder email: dick.deridder@wur.nl telephone: +31 317 484074 

dr. ir. Jeroen de Ridder email: j.deridder4@umcutrecht.nl telephone: +31 88 7550406 
The next course will be given June 2529 2018, at Wageningen University, Forum (Building 102), Droevendaalsesteeg 2, Wageningen. A map of the campus, including stops for buses from the EdeWageningen railways station (84/88), can be found here. All activities will take place in room PC0773, on the 7th floor of the building.
The course is aimed at PhD students with a background in bioinformatics, computer science or a related field; a working knowledge of basic statistics and linear algebra is assumed. The BioSB course "Pattern recognition" discusses many of the tools used in this course, but it is not required to have followed these. Prior knowledge of molecular biology is a bonus, but also not strictly required.
Preparation material on probability theory, linear algebra and molecular biology can be found below and should be read by all students before the course starts.
Molecular biology is concerned with the study of the presence of and interactions between molecules, at the cellular and subcellular level. In bioinformatics and systems biology, algorithms and tools are developed to model these interactions, with various goals: predicting yet unobserved interactions, assigning functions to yet unknown molecules through their relations with known molecules; predicting certain phenotypes such as diseases; or just to build up biological knowledge in a structured way.
Such interaction models are often best modelled as networks or graphs, which opens up the possibility of using a large number of readily available algorithms for inferring networks, performing simulations of biology, optimising paths or flows through networks, graphbased data integration and graph mining. Many of these algorithms can be applied (sometimes with slight alterations) to solve a particular biological problem, such as modeling transcriptional regulation or predicting protein interaction/complex formation, but also to derive systems behaviour by breaking down networks into modules or motifs with certain characteristics.
In this course, we will first give a brief overview of molecular biology, the advent of highthroughput measurement techniques and large databases containing biological knowledge, and the importance of networks to model all this. We will highlight a number of peculiar features of biological networks. Next, a number of basic network models (linear, Boolean, Bayesian) will be discussed, as well as methods of inferring these from observed measurement data. A number of alternative network models more suited for highlevel simulation of cellular behaviour will also be introduced. Building on the network inference methods, a number of ways of integrating various data sources and databases to refine biological networks will be discussed, with specific attention to the use of sequence information to refine interaction and transcription regulation networks. Finally, we will give some examples of algorithms exploiting the networks found to learn about biology, specifically for inspecting protein interaction networks.
In preparation for the course, please read the following primers on
Not all topics discussed in these primers will be used extensively in the course, but if you find yourself severely lacking in a certain area it may be wise to look up additional texts.
A folder containing handouts of the slides, papers to be discussed and a lab course manual will be distributed at the start of the course. Electronic copies of the course material can be found ===> HERE <===.
After the course, you will write a short research proposal (e.g. for an MSc student) on the application of one or more of the algorithms discussed during the course to a problem you encounter in your own research. The proposal should clearly state the background, the motivation, the problem statement and a proposed solution. Most importantly, it should be realistic, i.e. not require many years of work, large investments or magic to finish. You can discuss your idea for the proposal with the lecturers during the course. An example proposal (by Peter van Nes) and a set of guidelines are available for download.
Alternatively, you can apply one of the methods discussed in the course to a dataset or network in your own research. In this case, you should write a report in which you clearly introduce the background of your work, describe the data and network involved and the approach you take, discuss results and give conclusions.
Please mail your finished proposal or report to Maria SuarezDiez (as a PDF). The deadline for submission is August 31, 2018. We will strictly adhere to this deadline; if you require extension, you should contact us well in advance. The proposal will be graded "fail" or "pass", with one possible resubmission.
You can register for this course through the BioSB website. The maximum number of participants is 40, so register soon to be sure of a course seat! Should the course be overbooked, BioSB PhD student members will be allowed access first.
Please refer to the BioSB site for fees.
The fee includes:
Hotel rooms in Wageningen can be found through the usual travel websites. Participants have to book (and pay for) accommodation themselves if they need it; this is not included in the course fee.
One full week, followed by a final assignment. Most days are laid out uniformly, roughly as follows:
09.30  12.30  Lectures and labwork 
12.30  13.30  Lunch 
13.30  15.00  Handson computer lab work 
15.00  17.30  Participants read a scientific paper on the topics of the day, in small groups, and prepare and deliver short presentations. A couple of salient keywords is distributed among the participants. 
A detailed schedule can be found here.
1. Monday 25062018  Networks in biology 
Lecturers  Maria Suarez Diez, Dick de Ridder 
Subjects  A brief overview of moleculary biology: DNA, RNA, proteins and metabolites. Highthroughput measurement techniques and databases available. The role of networks in molecular biology. Examples of biological networks: regulatory programmes, signalling pathways and metabolic pathways. Networks as graphs, as steadystate descriptions and as dynamical systems. Network properties (small world properties, hubs; dynamic properties, stability, motifs). Network visualization. 
2. Tuesday 26062018  Network models and inference 
Lecturer  Maria Suarez Diez 
Subjects  Inferring various network models (linear, Boolean, Bayesian) from measurement data. Frequently used network models, derivation of networks from highthroughput data. 
3. Wednesday 27062018  Networkbased data analysis 
Lecturer  Jeroen de Ridder 
Subjects  Network clustering and community finding. Network flow, random walk and diffusion algorithms. Networkbased stratification. Networkbased classification and enrichment testing. 
4. Thursday 28062018  Network integration, analysis and evolution 
Lecturers  Dick de Ridder, AaltJan van Dijk 
Subjects  Network integration: goals and approaches. Integration as a prediction problem. Probabilities, distances, kernels. Analysing protein interaction networks in combination with protein sequences. Interaction network evolution, reconstruction of ancestral networks, network alignment for crossspecies comparisons. Interaction specificity, predicting protein interaction sites using network data and sequence data, correlated motif mining (interactiondriven vs motifdriven approaches). 
5. Friday 29062018  Network modelling and execution 
Lecturers  Anton Feenstra, Jaap Heringa 
Subjects  A discrete approach to network modeling. Using Petrinets as a formal network modeling tool, discrete and coarsegrained levels of cell constituents can be modeled in a discrete event fashion to understand network properties and behaviour at an abstract level. Network execution. Applications to signalling and regulatory networks discussed using 'reallife' examples. 