Telecon 2

Visual Analytics for Plant Pangenomes (VAPP)

Astrid van den Brandt | Eindhoven University of Technology Michel Westenberg | Eindhoven University of Technology Sandra Smit | Wageningen University & Research

Agenda

- 1. Recap project and aims
- 2. Progress since T1
- 3. Planning and next steps
- 4. Questions and feedback

Project Aims

To design a visual analytics system that supports plant genome scientists in analyzing genetic variation in crop data

Visual Analytics (VA)

Computer-based visualization systems provide **visual representations** of datasets designed to help people carry out **tasks** more effectively.

VA for Genomics

Computational biology Bioinformatics Visual Analytics

Figure: CANVAS (Nielsen, 2012)

Defining the Problem

1. Genomic data in general

- Growing volume of (sequence) data
- Sparse distributions of features
- Many different data types

2. Plant genome data

- Large genomes
- Large variation between genomes

Defining the Problem

3. Pangenome (graph) representations

- Linearizing the graph structure
- Existing solutions do not scale

Pangenome constructed with PanTools and Neo4j

VA for Plant Pangenomics

Pangenome constructed with PanTools and Neo4j

Understanding the Target Domain

Task analysis:

- Interviews & shadowing / observation
- Nearly completed first round
 - Identify some analysis tasks
 - Understand what is important to represent

Understanding the Target Domain

Analysis of variation across 2 levels of organisation and resolution:

- 1. Small-scale variation (UC1): sequence nucleotide level, markers
- 2. Large-scale variation (UC2): gene level and higher (structural)

UC1: Sequence Variation

Domain specific tasks & questions

- Assess allelic variation within a target gene, possibly by phenotype
- Assess the genetic variation within a gene or genomic region in 1000s of strains
- Efficiently identity variants with a desired haplotype and their evolutionary relationships

Task Abstraction

Task Abstraction (UC1)

Q: Considering a target gene in x accessions, where are variants and what are their types?

Task Abstraction (UC1)

Q: Within a genomic region, are there genes with variants and what are the types?

Task Abstraction (UC1)

Q: Within a genomic region, which variants are known for which genes and what is the closest reference?

UC2: Structural Variation

Domain specific tasks & questions

- Show collinearity / synteny to assess if recombination is likely to occur from wild
- Reveal organisation of resistance genes across multiple accessions
- Show presence/absence patterns of genes
- Support diagnosis of marker-segregation problems caused by SV

Task Abstraction (UC2)

Q: For one sequence, how many other sequences does it share syntenic blocks with?

Synteny (UC2)

Mizbee (Meyer et al., 2009)

	question	scale	relation
Q1	Which genomes share conserved blocks?	p, g	p
Q2	For one genome, how many other genomes does it share blocks with?	p, g	p
Q3	Which chromosomes share conserved blocks? In one genome? Between genomes?	g, c	p
Q4	For one chromosome, how many other chromosomes does it share blocks with?	g, c	p
Q5	Where are the blocks: on genomes? Around a specific location on a genome?	p, g	p
Q6	Where are the blocks: on chromosomes? Around a specific location on a chromosome?	g, c	p
Q7	What are sizes and locations of other genomic features near a block?	С	p, z
Q10	Are orientations forward or reverse for block pairs? gene pairs?	c, b	0
Q11	Do neighbouring blocks have matched orientations?	С	O
Q12	Are scores similar within a block? Between neighbouring blocks? Between genomes?	p, g, c, b	S
Q13	How large is a gene relative to other genes/features within a block?	b	Z
Q14 2. Pro	What are size, name and location of genes in a block? gress since T1	b	p, z

Task Abstraction (UC2)

Analyze

Discover <features> genomic region

Search

Explore <attributes> organisation of homologous genes

Query

Explore <characteristics> distribution and similarity

Q: Considering x accessions, how are homologous genes organized/ordered? What are functions of neighboring genes?

Design Process

Design study (Sedlmair et al., 2012)

Related Work

Jalview

Variant-View

Mizbee

Related Work

SynVisio

PanTetris

Sequence Tube Maps

PanX

Problems Existing Tools

- Cannot visualize much at the same time
- Switching between tools & recalculation
- Phenotype relations and grouping not visible

Visualization Challenges

- 1. Large number of samples
- 2. Genomic features are small and sparse
- 3. Navigation between levels of detail
- 4. Comparison n-to-n relations
- 5. Large number of datatypes

Addressing Issues of Scale

- 1. Scan sequentially: the user will examine items serially;
- 2. Select subset: the user will examine a smaller set of items;
- 3. **Summarise**: the user will examine an abstraction that concisely describes the items

(Gleicher, 2018)

PanTools Backend

Pangenome constructed with PanTools and Neo4j

Discussing output specification

- File format
- Indexing
- Coordinates
- Annotations

Paper Prototypes (Synteny)

First Prototype

- Yeast data set
- Exploring data structure
- Flask + D3

Second Prototype

- Yeast & Chloroplasts Lettuce
- Exploring data structure & vis
- Vue + Flask + D3

Flask

Timeline

3. Planning and next steps

32

FINAL PROTOTYPE & DOCUMENTATION

Time ine We are here!

ine ine we are here!

Next Steps

- 1. Complete and refine task abstraction for UC1 and UC2
- 2. Design of views: mockups
- 3. Implement design in prototype
- 4. Feedback: first group and plenary

Questions?